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Outline
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• PAPI
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• Accuracy Issues
• Overhead Issues
• Implications for PAPI
• Microbenchmark results and future work
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Performance Monitoring Hardware

• Available on most modern microprocessors
• Consists of registers that record data about the 

processor’s function
– Event counts
– Data and instruction addresses for an event
– Pipeline or memory latencies

• Control registers for configuration and control
• Data useful for performance modeling, analysis, 

and tuning



June 10-14, 2002 DoD HPC Users Group Conference 4

Overview of PAPI
• Performance Application Programming 

Interface
• The purpose of the PAPI project is to 

design, standardize and implement a 
portable and efficient API to access the 
hardware performance monitor counters 
found on most modern microprocessors.

• Parallel Tools Consortium project 
http://www.ptools.org/
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PAPI Counter Interfaces

• PAPI provides three interfaces to the 
underlying counter hardware:
1. The low level interface manages hardware 

events in user defined groups called EventSets. 
2. The high level interface simply provides the 

ability to start, stop and read the counters for a 
specified list of events.

3. Graphical tools to visualize information.
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PAPI Preset Events

• Proposed standard set of events deemed 
most relevant for application performance 
tuning

• Defined in papiStdEventDefs.h
• Mapped to native events on a given 

platform
– Run tests/avail to see list of PAPI preset events 

available on a platform
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High-level Interface

• Meant for application programmers wanting 
coarse-grained measurements

• Not thread safe
• Calls the lower level API
• Allows only PAPI preset events
• Easier to use and less setup (additional 

code) than low-level
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High-level API
• Fortran interface

PAPIF_start_counters
PAPIF_read_counters
PAPIF_stop_counters
PAPIF_accum_counters
PAPIF_num_counters
PAPIF_flops

• C interface
PAPI_start_counters
PAPI_read_counters
PAPI_stop_counters
PAPI_accum_counters
PAPI_num_counters
PAPI_flops
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Low-level Interface
• Increased efficiency and functionality over the 

high level PAPI interface
• Manages events in EventSets
• About 40 functions
• Obtain information about the executable and the 

hardware
• Thread-safe
• Fully programmable
• Callbacks on counter overflow
• Counter multiplexing
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Event set Operations

• Event set management
PAPI_create_eventset, PAPI_add_event[s], 
PAPI_rem_event[s], PAPI_destroy_eventset

• Event set control
PAPI_start, PAPI_stop, PAPI_read, 
PAPI_accum

• Event set inquiry
PAPI_query_event, PAPI_list_events,... 
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Callbacks on Counter Overflow

• PAPI provides the ability to call user-
defined handlers when a specified event 
exceeds a specified threshold.

• For systems that do not support counter 
overflow at the OS level, PAPI sets up a 
high resolution interval timer and installs a 
timer interrupt handler.
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PAPI_overflow

• int PAPI_overflow(int EventSet, int 
EventCode, int threshold, int flags, 
PAPI_overflow_handler_t handler)

• Sets up an EventSet such that when it is 
PAPI_start()’d, it begins to register 
overflows

• The EventSet may contain multiple events, 
but only one may be an overflow trigger.
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Statistical Profiling

• PAPI provides support for execution 
profiling based on any counter event.

• PAPI_profil() creates a histogram of 
overflow counts for a specified region of the 
application code.
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PAPI_profil
int PAPI_profil(unsigned short *buf, unsigned int 
bufsiz, unsigned long offset, unsigned scale, int 
EventSet, int EventCode, int threshold, int flags)

•buf – buffer of bufsiz bytes in which the histogram 
counts are stored

•offset – start address of the region to be profiled

•scale – contraction factor that indicates how much 
smaller the histogram buffer is than the region to be 
profiled
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PAPI 2.1 Release
• Platforms

– Linux/x86, Windows 2000
• Requires patch to Linux kernel, driver for Windows

– Linux/IA-64
– Sun Solaris/Ultra 2.8
– IBM AIX/Power

• Requires pmtoolkit (available from 
http://alphaworks.ibm.com/)b

– SGI IRIX/MIPS
– Cray T3E/Unicos

• Fortran and C binding and MATLAB wrappers
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Performance Monitoring Modes

• Counting mode
– Aggregate counts of event occurrences
– Used to measure aggregate performance 

characteristics of application or system under 
study

• Sampling mode
– Statistical sampling based on counter overflows
– Used to relate performance problems to 

program locations
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Performance Monitoring Modes 
(cont.)

• Platforms vary in support
– SGI IRIX on MIPS R10K/12K - both
– IBM Power 3 – counting mode
– Compaq Alpha – sampling mode
– IA-64 – both

• Either mode derivable from the other
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Example: SGI IRIX

• perfex
– Used to run a program and report “exact” 

counts of any two selected events for 
R10K/12K hardware counters, or to time-
multiplex all 32 countable events

• ssrun
– Run program in sampling mode to determine 

where in program events are occurring
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Example:  Compaq DCPI

• Compaq (formerly Digital) Continuous Profiling 
Interface

• Implemented on Alpha 21264A and later 
processors

• Based on instruction sampling with random period
• Interrupts running program, selects inflight 

instruction, and writes (exact) program counter 
and performance register values to database
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DCPI (cont.)

• DCPI data collection is system-wide
• DCPI database is organized by epoch, 

process ID, and executable image
• Analytical tools 

– dcpiprof
– dcpilist
– dcpitopcounts
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DCPI (cont.)

Examples:
• To display number of retired instruction samples and 

process cycle samples for each procedure:
dcpiprof –event cycles –pm retired <image>

• For line-by-line display of ratio of retired instructions to 
replays:
dcpilist –pm retired+retired::replays <procedure> <image>

• To display instructions with highest average retire delay:
dcpitopcounts –pm valid:retdelay::valid <image>
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Example: IA-64 PMU

• Supports access to counters in either counting or 
sampling mode

• Special features
– Dedicated overflow interrupt mechanism
– Data and instruction address and opcode qualification
– Event Address Registers (EARs)
– Branch Trace Buffer (BTB) event capture

• Access through pfmon and pfmlib by Stephane 
Eranian (Hewlett-Packard)
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IA-64 PMU (cont.)

• Counting mode example:
pfmon –e cpu_cycles,ia64_inst_retired <command>

• Sampling mode example:
pfmon –smpl-period=50000 –e cpu_cycles,ia64_inst_retired <command>



June 10-14, 2002 DoD HPC Users Group Conference 25

Sources of Error

• Perturbation by counter interfaces
– Extra instructions
– System calls
– Cache pollution
– Servicing interrupts

• PC sampling smear and skew on out-of-order 
processors

• Software multiplexing estimates counts from time-
sliced values
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Perturbation Errors

• Two types of errors discovered in 
microbenchmark studies
– Constant bias

• Can be compensated for

– Variable error
• Becomes insignificant if measured code is increased 

to sufficient granularity so that counter interface 
does not dominate
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PC Sampling Error
• Non-constant bias
• Does not converge to expected value with greater 

number of samples
• DCPI solves this problem by knowing the precise 

program counter and execution history of 
randomly sampled instruction (supported in 
hardware).

• IA-64 provides a set of Event Address Registers 
(EARs) that capture where cache and TLB misses 
occur.
– Randomized choice of which load instruction is traced  
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Statistical Sampling Error

• Sample value converges to expected value 
as the number of samples increases.

• Infrequent events or long sampling intervals 
require longer runs to get accurate 
estimates.  

• Shorter sampling intervals increase 
sampling overhead. 



June 10-14, 2002 DoD HPC Users Group Conference 29

Overhead of PAPI read

• Overhead in cycles per read call:

98103126652615141299

MIPS R12KIBM Power3Linux/IA-64Cray T3ELinux/x86
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Counting vs. Sampling Overheads

• EVH1 code instrumented with PAPI using 
TAU runs 5-10% slower

• Reports of 7-8x slowdown with PAPI 
instrumentation in tight loop on IBM 
Power3, 100x slowdown on SGI

• Sampling overhead using DCPI is usually 
around 0.05% but need at least 100 samples, 
or 6 million cycles, for accurate results.
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Implications for PAPI

• Use hardware support for profiling where 
available

• Use programmable events to set up control blocks 
and return additional information
PAPI_add_pevent
PAPI_pread

• Standardize new features
– Data and instruction address qualification
– Opcode matching
– Latency qualification/measurements
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Implications for PAPI

• More experimental work needed to 
determine tradeoffs between accuracy and 
efficiency for counting vs. sampling mode 
on various platforms
– New PAPI substrate for Compaq Alpha using 

new DCPI
– Itanium
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Implications for PAPI (cont.)

• Expand support for sampling mode in PAPI 
beyond current PAPI_overflow, 
PAPI_profil

• Handle choice between counting and 
sampling mode at tool level so that users 
can request performance data they want 
without worrying about how to do the 
instrumentation 
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Determining the Accuracy of 
Event Counts - Methodology

• Design and implement microbenchmarks for 
– Event count prediction
– Determination of algorithm implemented in processor

• E.g., branch prediction or cache prefetch algorithm
– Predicted event count verification 

• Collect data
– Scripts permit a large number of experiments to be 

performed
– Means and standard deviations computed

• Compare predicted and actual event counts
• Repeat process if necessary 
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Microbenchmarks

• Contain simple code segments
• Small when possible
• Comprised of regular patterns that permit 

mathematical modeling of associated event 
count

• Scalable w.r.t. granularity, i.e., number of 
generated events
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Four Classes of Errors

• Overhead Bias
• Multiplicative 
• Random
• Unknown

– not predictable but verifiable
– not predictable and cannot determine veracity

• e.g., randomness in algorithm does not allow 
prediction
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When Event Counts Can Be Used 
to Tune Performance

• Overhead Bias Error 
– adjust counts or granularity accordingly

• Multiplicative
– adjust counts accordingly

• Random
– perform multiple experiments and verify that standard 

deviation is small

• Unknown, not predictable but verifiable
– not useful for fine performance tuning but useful for 

coarse tuning
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When Event Counts Cannot Be 
Used to Tune Performance

• Unknown
– vendor assistance is needed to understand what 

is being counted or what algorithm is 
implemented in the processor

– segregate combinations of error classes



June 10-14, 2002 DoD HPC Users Group Conference 39

Overhead Bias Error

N/AMult. 
Error

31129Stores

N/A462886Loads

PentiumR12KPower3Itanium
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Multiplicative Error
Floating Point OPs

0

20

40

60

80

100

120

6
6
0
0

1
3
2
0
0

1
9
8
0
0

2
6
4
0
0

3
3
0
0
0

3
9
6
0
0

4
6
2
0
0

5
2
8
0
0

5
9
4
0
0

6
6
0
0
0

1
3
2
0
0

1
9
8
0
0

2
6
4
0
0

3
3
0
0
0

3
9
6
0
0

4
6
2
0
0

5
2
8
0
0

5
9
4
0
0

6
6
0
0
0

1
E

+
0
6

2
E

+
0
6

3
E

+
0
6

3
E

+
0
6

7
E

+
0
6

3
E

+
0
7

7
E

+
0
7

Expected Value

%
 E

rr
o

r Itanium
Power3
R12k
Pentium II



June 10-14, 2002 DoD HPC Users Group Conference 41

Random Error

566,370782,89110% of data 
–
1M accesses

1701,29090% of data 
– 1M accesses

Standard 
Deviation

MeanItanium L1 
Data Cache 
Misses
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Unknown – Not Predictable But 
Verifiable
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Unknown – Not Predictable and 
Not Verifiable

• Branch prediction
– Algorithms used for prediction are very 

complex
– Without proprietary information cannot make 

predictions
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Future Work

• Expand events and platforms studied
• Compare accuracy of sampling with that of 

aggregate counts
• Determine usefulness of event counts 

generated by both sampling and aggregate 
counts for specific DoD applications
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